Polarographische Untersuchungen an Thallium(I)—Äthan-1,2-dithiolkomplexen

Von

R. S. Saxena und S. K. Bhatia

Department of Chemistry, Malaviya Regional Engineering College, Jaipur, Indien

Mit 3 Abbildungen

(Eingegangen am 13. Juni 1975)

Polarographic Study of Thallium(I)—Ethane-1,2-dithiol Complexes

Complexation of thallium(I) with ethane-1,2-dithiol has been studied polarographically in 25% ethanol, 0.5M-NaClO₄, 0.01M-HClO₄ and 0.002% Triton X-100. Thallium in presence of ethane-1,2-dithiol, reduces reversibly at d.m.e. and the plateau current is diffusion-controlled. The successive formation of two complexes, 1:1 and 1:2, is indicated by *Deford* and *Hume's* method. The overall changes in the thermodynamic parameters viz. ΔG , ΔH , ΔS accompanying complexation reactions have also been reported.

Einleitung

Thiole wirken infolge der Anwesenheit von SH-Gruppen als starke komplexbildende Mittel. Die Autoren haben bereits das polarographische Verhalten von Äthan-1,2-dithiol, sowie, nach potentiometrischen und konduktometrischen Verfahren^{1, 2}, dessen Komplexe mit UO₂²⁺- und Th⁴⁺-Ionen untersucht. In der vorliegenden Mitteilung wird über die polarographische Untersuchung der Zusammensetzung und Stabilitätskonstanten von Tl(I)—Äthan-1,2-dithiolkomplexen berichtet, über die in der Literatur noch keine Angaben vorliegen.

Experimentelles

Die Kapillare des manuellen Polarographen, mit Scalamp-Galvanometer als Strommeßgerät und einer gesätt. Kalomel-Bezugselektrode, wies bei — 0,5 V die nachstehenden Charakteristiken auf:

 $m = 2{,}895 \text{ mg/sec}, t = 2{,}39 \text{ sec } (h_{\rm Hg} = 40 \text{ cm}).$

Die Polarogramme der Lösungen wurden in inerter Atmosphäre (N₂), unter Verwendung einer mittels Thermostaten temperaturkonstant gehaltenen *H*-Zelle, registriert; diese Lösungen enthielten 1,0 mMol Tl⁺, 0,5 Mol NaClO₄, 0,01 Mol HClO₄, 2 g Triton X-100 pro Liter in 25proz. Äthanol und verschiedene Konzentrationen von Äthan-1,2-dithiol.

Ergebnisse und Diskussion

Bei der üblichen graphischen Darstellung des log der Reduktionswelle für Tl+ in Äthan-1,2-dithiol-(*EDT*)-medien erhielt man eine gerade

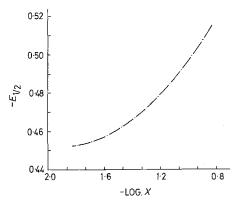


Abb. 1. Graphische Darstellung von E_{ij} gegen $\log X$ bei 30 °C

Linie, deren Neigung die reversible Natur der Elektrodenreaktion anzeigt. Die Konstanz von $i_a/h_{\rm eff}^{1/2}$ (1,245 $\mu A/{\rm cm}^{1/2}$) und die Werte des Temperaturkoeffizienten (1,912%/Grad) zeigen die diffusionskontrollierte Natur der Wellen an. Mit steigender Konzentration von EDT verschiebt sich $E_{1/2}$ zu negativeren Potentialen, was die Komplexbildung zwischen Tl(I) und EDT anzeigt. Der beträchtliche Unterschied des Diffusionsstromes von Tl(I)-ion allein und in Gegenwart von EDT zeigt an, daß die aquo-Thalliumionen und der Tl-EDT-Komplex in ihrer Größe verschieden sind.

Trägt man $E_{1/2}$ gegen log [EDT] auf, so erhält man eine Kurve (Abb. 1), die die Bildung aufeinanderfolgender Komplexe anzeigt. Für die reversible Reduktion von komplex gebundenem Metallion zu dem Metallamalgam, ausgedrückt als

$$MX_j^{(n-jm)} + n e + Hg = M (Hg) + j (X)^{-m}$$

haben Deford und Hume^{3, 4} eine Reihe von Gleichungen abgeleitet, um die polarographischen Daten mit den Stabilitätskonstanten der Kom-

plexe unter der Bedingung konstanter Ionenstärke und definierter verschiedener Funktionen $F_j(X)$ in Beziehung zu bringen, beispielsweise

$$\begin{split} \mathrm{F}_{0}\left(X\right) &= \mathrm{antilog}\bigg[0.43 \frac{n}{RT} \big\{ (E_{1/2})_{8} - (E_{1/2})_{c} \big\} + \log \frac{I_{8}}{I_{c}} \Big] \\ &= 1 + \beta_{1} \, X + \beta_{2} \, (X)^{2} + \beta_{3} \, (X)^{3} + \ldots \beta_{N} \, (X)^{N} \\ \mathrm{F}_{1}\left(X\right) &= \frac{\mathrm{F}_{0}\left(X\right) - 1}{X} = \beta_{1} + \beta_{2} \, X + \beta_{3} \, (X)^{2} + \ldots + \beta_{N} \, (X)^{N-1} \\ \mathrm{F}_{3}\left(X\right) &= \frac{\mathrm{F}_{1}\left(X\right) - \beta_{1}}{X} = \beta_{2} + \beta_{3} \, X + \ldots + \beta_{N} \, (X)^{N-2} \end{split}$$

usw., worin $(E_{1/2})_s$, bzw. $(E_{1/2})_c$ die Halbwellenpotentiale für die einfachen, bzw. komplex gebundenen Metallionen, I_s und I_c die experimentell bestimmten Diffusionsstromkonstanten für diese Species und X die Konzentration des Liganden bedeuten.

Tabelle 1. Werte von $E_{1/2}$, i_d und verschiedenen Funktionen für die Tl(I)—Äthan-1,2-dithiolkomplexe

Temp.	Konzen- tration von EDT, Mol/l	$-E_{\frac{1}{2}}$, V	i_d , μA	$\mathbf{F_0}\left(X\right)$	$\mathbb{F}_{1}\left(X ight)$	$\mathrm{F}_2 (X)$
	0,00	0,4450	8,08			
30 °C	0,02	0,4545	6,98	1,67	33,55	757
	0,04	0,4665	6,90	2,67	41,28	582
	0,06	0,4800	6,80	4,55	59,17	686
	0,08	0,4880	6,70	6,28	65,95	599
	0,10	0,4960	6,50	8,79	77,94	599
	0,12	0,5075	6,40	13,86	107,33	744
40 °C	0,00	0,4435	9,55			
	0,02	0,4510	8,55	1,47	23,50	475
	0,04	0,4635	8,25	2,41	35,23	530
	0,06	0,4760	8,20	3,83	47,23	554
	0,08	0,4870	8,00	5,87	60,98	587
	0,10	0,4950	7,85	8,04	70,37	564
	0,12	0,5022	7,75	10,59	79.91	549

Die Werte verschiedener Funktionen bei 30 °C und 40 °C sind in Tab. 1 aufgeführt; deren graphische Darstellung als Funktion von X wird in Abb. 2 gezeigt. Wird $F_2(X)$ gegen X aufgetragen, so erhält man eine horizontale gerade Linie, die anzeigt, daß nur zwei Komplexe, nämlich ein 1:1- und ein 1:2-Komplex, gebildet werden. Die Werte

der Bildungskonstanten verschiedener Komplexe wurden erhalten, indem man die obigen Kurven auf X=0 extrapolierte; hiebei fand man:

$$eta_1 = 18, \quad eta_2 = 599 \ {
m bei} \ 30 \ {
m ^{\circ}C} \ {
m und} \ eta_1 = 14, \quad eta_2 = 556 \ {
m bei} \ 40 \ {
m ^{\circ}C}.$$

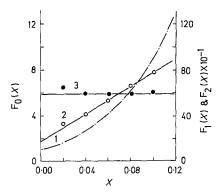


Abb. 2. Graphische Darstellung von 1. F₀ (X), 2. F₁ (X) und 3. F₂ (X) gegen X bei 30 °C

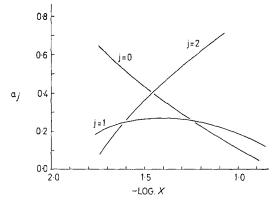


Abb. 3. Verteilung der Komplexspecies als Funktion der Ligandkonzentration in dem Thallium—EDT-System bei 30 °C

Der Grad der Bildung der Komplexspecies wurde nach der für den j-ten Komplex gegebenen Beziehung berechnet.

$$a_{j} = \frac{MX_{j}}{C_{M}} = \frac{\beta_{j}(X)^{J}}{F_{0}(X)}$$

Daher ergibt sich für den 1:1-Komplex:

$$a_1 = \frac{\beta_1(X)}{F_0(X)}$$

Für den 1:2-Komplex ergibt sich:

$$a_2 = \frac{\beta_2 (X)^2}{F_0 (X)}$$

Die durch Auftragen von a_j gegen log X erhaltenen Verteilungskurven für die Komplexspecies sind in Abb. 3 gezeigt.

Die Werte für die, die komplexbildenden Reaktionen begleitende, Gesamtänderung der freien Energie (ΔG), Enthalpie (ΔH) und Entropie (ΔS) wurden bei 30 °C unter Anwendung von Standardgleichungen bestimmt und betragen — 3,850 kcal/Mol, bzw. — 1,603 kcal/Mol, bzw. 7,417 cal·Grad⁻¹·Mol⁻¹.

Die Autoren danken der C. S. I. R., New Delhi, für die Bewilligung eines Forschungs-Fellowships für den einen von uns $(S.\ K.\ B.)$ und Herrn Rektor Dr. D. Kumar, der die für die Forschungsarbeit erforderlichen Einrichtungen besorgte.

Literatur

- ¹ R. S. Saxena und S. K. Bhatia, Indian J. Chem. 12, 528 (1974).
- ² R. S. Saxena und S. K. Bhatia, J. Indian Chem. Soc. 51, 660 (1974).
- ³ D. D. DeFord und D. N. Hume, J. Amer. Chem. Soc. **73**, 5321 (1951).
- ⁴ D. R. Crow, Polarography of Metal complexes, pp. 66—67. London: Academic Press. 1969.
- ⁵ K. B. Yátsimirskii and V. P. Vasil'ev, Instability constants of complex compounds. Oxford: Pergamon Press. 1960.

Korrespondenz und Sonderdrucke: Prof. Dr. R. S. Saxena Dept. of Chemistry Malaviya Regional Engng. College Jaipur, Rajasthan Indien